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ABSTRACT

Decreased visibility, intensive noise, and biased color are the common problems existing in low-light
images. These visual disturbances further reduce the performance of high-level vision tasks, such as
object detection, and tracking. To address this issue, some image enhancement methods have been
proposed to increase the image contrast. However, most of them are implemented only in the spatial
domain, which can be severely influenced by noise signals while enhancing. Hence, in this work,
we propose a novel residual recurrent multi-wavelet convolutional neural network (R2-MWCNN)
learned in the frequency domain that can simultaneously increase the image contrast and reduce noise
signals well. This end-to-end trainable network utilizes a multi-level discrete wavelet transform to
divide input feature maps into distinct frequencies, resulting in a better denoise impact. A channel-
wise loss function is proposed to correct the color distortion for more realistic results. Extensive
experiments demonstrate that our proposed R2-MWCNN outperforms the state-of-the-art methods
quantitively and qualitatively.

1 Introduction

Low-light image enhancement is critical for many vision tasks, including recognition [1] and nighttime autonomous
driving [2]. However, low-light scenarios introduce a succession of visual degradations, e.g. diminished visibility,
intensive noise and color distortion in captured images. These images suffer from information loss and are likely to
undermine the performance of algorithms that are primarily designed for high-visibility conditions. Therefore, to
make the buried information visible, as shown in Figure 1, low-light image enhancement is expected. However, it is
non-trivial to enhance low-light images, as the noise and color distortion are easily be amplified unconsciously.

Many researchers have focused on addressing these issues over the last few decades, and many effective algorithms have
been proposed. Traditional low-light image enhancement algorithms can be broadly classed as Histogram Equalization-
related [3] and Retinex theory-related [4] methods. Histogram Equalization (HE) and its derivatives [5, 6], which mainly
focus on enhancing the constrast of images at the pixel level, can unintendedly amplify blind noise while restoring
illumination. The Retinex theory-based algorithms [7, 8] decompose image into a constant reflectance layer and a
variant illumination layer, with the purpose of restoring the illumination layer of the image independently. In practice,
however, reflectance and illumination layers are roughly estimated, which can cause visible color distortion and further
decrease visual quality.

The recent blossoming of deep learning has inspired the development of low-light enhancement. Some approaches
[12, 8] are built on the Retinex theory, while some others design CNNs [13, 14] and GANs [15] to enhance low-light
images directly. However, the shared problem is that these methods are mainly designed in the pixel domain, which
suits human perception rather than machine vision.

Precisely, for computer vision, the random noise carried by low-light images is hardly to be separated in the pixel domain.
Most of the existing denoising algorithms perform an individual filtering process or noise estimation elimination, and can
efficiently reduce the noise levels. However, the images are either blurred or over-smoothed, resulting in unsatisfactory
details and visual quality [16, 17]. Therefore, although recalling the visibility in the pixel domain is the most intuitive
and rather effective way, their capabilities for noise suppression and detail restoration are limited.
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(a) Original (b) LIME (c) RetinexNet

(d) DRBN (e) R2-MWCNN (f) Reference

Figure 1: The enhanced results in LOL-Real dataset [9] of different methods (PSNR/SSIM). (a) Low-light input. (b)
LIME [10] (19.2096/0.5778). (c) RetinexNet [8] (17.0594/0.4011). (d) DRBN [11] (25.8050/0.9273). (e) R2-MWCNN
(27.8149/0.9378). (f) Normal light reference. The proposed R2-MWCNN well restores high quality images from real
low-light inputs in the LOL-Real dataset.

Considering the separability between noise and structural information in the frequency domain [17], in this paper, we
propose a frequency-based architecture to address the problems of enhancing low-light images in the pixel domain. The
core of our architecture is a novel residual recurrent multi-wavelet convolutional neural network (R2-MWCNN). The
Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) [18] are introduced to replace
commonly used pooling and up-sampling operations and exploit multi-scale frequency-based features for denoising
and detail restoration. We also propose the Multi-level Short-cut Connections (MSC) module to select and transmit
low-level semantic information adaptively for detail recovery. Moreover, since enhanced low-light images usually suffer
from severe color distortion, a channel-wise loss function is proposed to aid the retrieval of pleasing visual quality.
Overall, our contributions are as follows:

• We propose a novel end-to-end frequency-based architecture for enhancing low-light images. It integrates
illumination enhancement, color restoration and denoising, and can improve both the objective and subjective
image quality.

• We propose an effective low-light image enhancement network with the proposed MSC modules to adaptively
select the high-/low-level semantic features for satisfactory detail restoration. DWT and IDWT are introduced
to exploit multi-scale frequency-based features, which serves as an appropriate basis for separating noise from
the structural information.

• A novel channel-wise loss function is designed to handle the pixel-intensity distribution of each color channel
in order to overcome color distortion and improve the visual quality. Extensive experiments show that our
framework outperforms the existing state-of-the-art methods both quantitatively and qualitatively.

2 Related Work

Low-light enhancement techniques can be classified into classic or deep learning-based algorithms according to whether
a data-driven deep network is adopted.

Classic enhancement algorithms. Histogram equalization and its derivatives are one of the classic algorithm
categories. CLAHE [19] attempts to alleviate noise amplification by limiting the range of contrast. BPDHE [20] aims
to maintain brightness while dynamically correcting contrast. LDR [21] proposes investigating the layered difference
representation of 2-D histograms in order to enhance contrast by emphasizing gray-level differences between adjacent
pixels. DHECE [22] combines differential gray-levels histogram equalization of saturation and intensity to generate
appropriate high-contrast results.

Another traditional low-light enhancement category is built based on the Retinex theory, which assumes an image
consists of a constant reflectance layer and a variant illumination layer. Hence, if these two layers can be successfully
separated and enhanced properly, the low-light image can be enhanced well by combining them. SSR [23] and MSR
[24] are typical Retinex theory-based enhancement algorithms that attempt to rectify the illumination map for brightness
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Figure 2: The end-to-end architecture of the Residual Recurrent Multi-Wavelet Convolutional Neural Network (R2-
MWCNN) with U-Net [36], wavelet transform and Multi-level Short-cut Connections module (red swirling arrow).

enhancement. AMSR [25] proposes a weighting strategy for each MSR output. MSRCR [26] tries to enhance reflectance
estimation with a color restoration factor. RRM [27] designs an optimization function to constrain noise in illumination
estimates. SRIE [28] employs a weighted vibrational model to estimate reflectance and illumination. LIME [10] refines
the maximum-approximated illumination and recomposes the enhancement result in accordance with Retinex theory.

However, these methods heavily rely on manually designed parameters that suit different low-light images. Hence, they
are not flexible and easily amplify noise and color distortion, causing decreased visual quality.

Deep learning-based methods. Recently, deep learning has stimulated tremendous progress in low-light image
enhancement. For example, LLNet [29] is the first deep learning trial in low-light image enhancement, proposing an
auto-encoder for contrast enhancement and denoising. MSR-net [30] is the earliest implementation of the Retinex
theory-based supervised CNN. EnlightenGAN [31] is a successful trial of Generative Adversarial Nets (GANs) that can
adaptively learn from unpaired low/normal-light images. Retinex-Net [8] is designed to integrate deep learning with
Retinex theory, which can decompose the image to enhance the illumination and reflectance, respectively. DeepUPE
[32] presents a neural network that enhances under-exposure images by learning complicated photography adjustments.
SICE [33] includes an end-to-end CNN to adapt the contrast of multi-exposure input images. MBLLEN [34] adopts
three modules within a single network, improving the output of each extraction layer and combining them together
to create the final enhanced image. DRBN [11] proposes a semi-supervised learning framework to enhance low-light
images from coarse to fine.

Although these methods have demonstrated outstanding low-light enhancement performance, due to the limitations of
the pixel domain, blind noise can not be effectively eliminated from the images. Blurring and color distortion, which are
caused by spatial denoising, continue to obstruct practical application. To overcome this shared limitation, R2-MWCNN
employs an invertible wavelet transform [35] to perform denoising in the frequency domain so that to effectively recover
sharp structures from degraded observation. In real-world scenes, the image information has a certain structure, but
the noise is random without a specific structural property. Hence, the introduction of the wavelet transform allows the
network to separate the image structural information and the noise, which aids in preserving pleasing details during
denoising. Moreover, a novel channel-wise loss is proposed to correct the common color distortion problem in low-light
enhancement.

3 Methodology

3.1 R2-MWCNN Network

Our network comes from two inspirations. First, it is easier to remove noise from image structural information in
the frequency domain and to estimate the global illumination from the low-frequency features [37]. Second, it is
known that as the network depth increases, the model can extract higher-level semantic information from the image.
Nevertheless, with the common employment of down-sampling operations, the original low-level structural information
may be lost as the network deepens. Hence, as shown in the Figure 2, the proposed R2-MWCNN is built with the
U-Net structure [36], wavelet transform and several MSC modules. The MSC module is employed by replacing normal
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(a) MSC Module with Attention Map (b) DWT with Attention Mechanism

Figure 3: The MSC module with attention map utilizes several shortcut connections and multiple add operations to
maintain low-level original graphic information. The DWT with attention mechanism performs space-to-frequency
transform, which enables the model to separate noisy signals from structural information.

covolutional blocks, which can transmit low-level graphic information into deeper network layers without requiring
additional computational cost. Our R2-MWCNN comprises a contracting subnetwork and an expanding subnetwork.
In the contracting subnetwork, the invertible DWT is introduced to replace the frequently used pooling operation and
perform space-to-frequency tranform. In the expansion subnetwork, IDWT is presented to restore all the information
that is kept by DWT to high resolution in the pixel domain.

MSC module. Inspired by recurrent convolutional layer [38], we propose the MSC module, as shown in Figure 3 (a).
The goal of the MSC module is to preserve and transmit low-level features into subsequent layers without requiring
additional processing resources, so as to restore satisfactory details. Given the input features Xin ∈ RH×W×C and
convolutional operation F(·), the MSC module first calculates the pixel-wise contrast-aware attention map Ca [39] to
select features by:

Ca = sigmoid(Fmap(Xin)),

Xa = Ca ·Ain.
(1)

Next, considering the information loss as the network deepens, several shortcut connections are conducted between
the input layer and the subsequent convolutional layers in the MSC module to adaptively select low-level graphic
information. The shortcut connection [40] performs an add operation between the identity mapping and the output of
previously stacked features, which can be calculated by F(x1) + x2. Considering that the output of the lth layer in the
MSC module is Xl+1, which can be calculated accordingly:

Xl+1 = Fl(Xl + F0(Xa)), (2)

where F0(·) represents 1× 1 convolution of input Xa to match the output dimensions.

Wavelet Transform. To guarantee that all the information can be well-preserved, in the R2-MWCNN, we utilize DWT
and IDWT to replace the commonly-used downsampling and upsampling. The DWT can be viewed as a top-down
collection of several filters that can theoretically extract both frequency and location features, shown in Figure 3 (b),
while IWT is employed to substitute the transpose convolutional layer to integrate low resolution features maps into
recovered high resolution ones.

In practice, given the trade-off between fidelity gain and computational cost, a two-layer DWT with four sub-band
outputs (XLL, XLH , XHL and XHH ) is adopted [18], where the subscript index is an ordered representation of filter
processing. For example, assuming the input sample is Xin ∈ RH×W×C , XLL is the output of X that passes through
two low-pass filters, which can be calculated as below:

XLL = Xin ⊗ fLL, (3)
where fLL can be defined as:

fLL =

[
1 1
1 1

]
. (4)

Analogously, the rest of the filter definitions are shown as follows:

fLH =

[
−1 −1
1 1

]
, fHL =

[
−1 1
−1 1

]
, fHH =

[
1 −1
1 −1

]
. (5)

As can be seen, the pixel-intensity of the four sub-band outputs is substantially distinctive. Hence, we normalize the
value range to [0, 1] to ease computational burden. Finally, the attention mechanism [41] is introduced to adaptively
scale the feature maps from different sub-bands in a channel-wise manner.
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3.2 Loss Function

The Mean Square Error (MSE), also known as L2 loss, is a commonly used error measurement for low-light image
enhancement. Nevertheless, L2 loss has been proven to be insufficient for recovering favourable details and can even
induce blur at the object edges [42]. In order to finely recover the visual details of the image, we use multiple losses
to measure differences in various aspects of the enhanced image and the corresponding ground truth. The whole loss
function for training consists of four parts:

Loss = Lpixel + Lglobal + Ledge + Lchannel (6)

Pixel-wise Loss. The pixel-wise loss, indicated as Lpixel, is a variant of the Smooth L1 loss. The wider gap between
blind noise and structural information in Smooth L1 loss compared to L2 loss, makes the network more focused on
denoising. Experiments reveal that our network performs well in dark regions yet over-enhances bright regions. After
conducting several trials, the images are divided into bright and dark region with a 3:7 area ratio. Different weights w1

and w2 are assigned to provide a better approximation of the bright region.

Lpixel = w1 ·
1

nLmL

nL∑
i=1

mL∑
j=1

SmoothL1(EL(i, j), GL(i, j))

+ w2 ·
1

nHmH

nH∑
i=1

mH∑
j=1

Smoothl1(EH(i, j), GH(i, j)),

(7)

where EH and GH represent the bright region of the enhanced image and the ground truth reference, and EL and GL

are the rest of the image.

Global-wise Loss. The global-wise loss is a combination of structure loss and perceptual loss [43]. Structural loss
is calculated using Structure Similarity (SSIM) [44], which is designed to assess the global variations in contrast,
brightness, and structure between the enhanced image and the normal image from a global perspective. The perceptual
loss is offered to primarily concerned with high-level context via the employment of feature-extraction VGG network
[45]. If the enhanced results and the original images are close, the VGG extractor outputs should be similar as well.
Our global-wise loss is calculated as follows:

Lglobal = w3 ·
1

Ci,jHi,jWi,j
||φi,j(E)− φi,j(G)||22 − w4 ·

(2µEµG + C1)(2σEG + C2)

(µ2
E + µ2

G + C1)(σ2
E + σ2

G + C2)
, (8)

where E and G represent enhanced image and ground truth, respectively, and φi,j(·) refers to the feature extractor of
the ith block jth layer in the VGG network. Ci,j , Wi,j and Hi,j describe the 3-dimensions of feature maps extracted
from the VGG-19 network. Towards the structure loss, µx and σx are average and variance, respectively, while σxy
represents covariance between images. C is a small constant to prevent division by zero.

Edge Loss. Normally, denoising operations can introduce severe blurring. Words and object edges could be blurred
after enhancement, which reduces the practicality of the low-light enhancement algorithms. With respect to that visual
deterioration, the edge loss is utilized to evaluate the generated edges. In practice, the Sobel gradient is utilized as the
edge information in the images. Two Sobel calculators, Sx and Sy , with x-axis and y-axis orientations, respectively, are
used to estimate the gradient between two adjacent pixels. Thus, the edge loss between E and G can be calculated as
follows:

Ledge = ||Sx ⊗ E − Sx ⊗G||1 + ||Sy ⊗ E − Sy ⊗G||1. (9)

Channel-wise Loss. The previous methods generally use element-wise differences like L2 loss to measure the color
fidelity. However, these methods often have color channel prejudice, resulting in generating color-biased images. The
proposed channel-wise loss can make the network learn the pleasing global color distribution from bright images, which
can guide low-light image enhancement. Therefore, satisfactory colors can be achieved. Firstly, Gaussian blur is used
to eliminate image textures with kernel KG:

KG(k, l) = A · exp(− (k − µx)
2

2σx
− (l − µy)

2

2σy
), (10)

where A is defined as 0.2, and Gaussian blurred image of E is referred to as Eb:

Eb(i, j) =

W−k∑
i

H−l∑
j

E(i+ k, j + l) ·KG(k, l), (11)
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(a) Original (b) LIME (c) RetinexNet (d) DRBN (e) Ours (f) Reference

Figure 4: The visual results of state-of-the-art methods and ours on real low-light images from LOL-Real test dataset
(top-to-bottom).

the operation towards G is the same. Hence, the channel-wise loss can be calculated by:

Lchannel =

C∑
h

||
W∑
i

H∑
j

Eb(i, j, h)−
W∑
i

H∑
j

Gb(i, j, h))||1. (12)

The channel-wise loss can suppress biased color, which is typically produced by over or under enhancement of one or
more of the RGB channels. Therefore, the network that is guided by this channel-wise loss can retrieve more real colors.

4 Experiment

4.1 Implementation Setting

We have implemented the proposed model in the Tensorflow framework [46]. The R2-MWCNN is optimized by the
ADAM optimizer for 300 epoches with randomly initialized parameters. The initial learning rate and batch size for
training are set to 2e−4 and 2. In order to reduce the computational cost, the input image values are scaled to [0, 1]. The
learning rate is automatically decayed by the Tensorflow ReduceLROnPlateau with a patience of 10 and a decrease
factor of 0.2. Rotation and flip based data augmentation have been adopted. The entire training process takes around 1
day to converge with the NVIDIA Tesla P40.

4.2 Comparison with Existing Methods

We conduct extensive experiments using real instances from the LOL-Real dataset [9]. Results are compared between R2-
MWCNN and the other different state-of-the-art methods, including both classic and deep learning-based. Representative
results are visually shown in Figure 4. In general, most previous methods implemented in the pixel domain have limited
denoising and structure recovery capacities. By checking the details, BPDHE, LIME perform well in streching contrast.
Nevertheless, blind noise is heavily amplified, resulting in severe visual degradation. The great performance of DRBN,
CRM and SICE in the objective evaluation shows their ability to restore global illumination and visibility. However,
structural information and image details are not promising. Comparatively, R2-MWCNN can detach both the additive
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and non-additive noise from the image structural information in the frequency domain effectively. In this way, our
method achieves good detail fidelity and perceptual visual quality, as well as satisfactory global illumination.

Table 1: Quantitative results in LOL-Real dataset [9]. (Red: The best, Blue: The second)

Metric BIMEF [47] BPDHE [20] CRM [48] RetinexNet [8] EFF [49] LDR
PSNR 17.85 13.84 19.65 16.10 17.85 17.17
SSIM 0.6353 0.3990 0.6344 0.5689 0.6353 0.5697
FID 1.5623 2.7219 0.6480 1.8457 1.5623 2.7266

Metric JED [50] LIME [10] MF [51] RRM [27] E-GAN [31] DONG
PSNR 17.23 15.24 18.73 17.35 18.64 17.26
SSIM 0.7256 0.4181 0.5050 0.7251 0.6786 0.4755
FID 1.8785 11.908 0.9072 1.7040 0.7902 1.1610

Metric ASMR MSR [26] DeepUPE [32] SICE [33] DRBN [11] R2-MWCNN
PSNR 15.37 11.67 13.17 19.40 20.11 23.23
SSIM 0.4310 0.4064 0.4509 0.6842 0.8495 0.8648
FID 2.3692 7.8184 1.1641 0.6233 0.5039 0.2716

Table 1 contains a quantitative comparison of various methods. We adopt three objective image quality representatives as
performance criteria: Structure Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Frechet Inception Distance
(FID) [52]. PSNR is utilized to measure the detail fidelity between the enhanced image and the normal light image.
SSIM is more concerned with structural information and global illumination recovery. Consider that the perceptual
visual quality might not be well captured by the PSNR and SSIM. We utilize FID score to measure the similarity
between the enhanced image and the groundtruth image from the high-level context. The lower FID value indicates
a greater quantity of similarity. Our method (Red) outperforms all the other methods in PSNR, SSIM and FID by a
large margin. More concretely, R2-MWCNN considerably surpasses the second best method (Blue) in all three criteria,
which means our method is equipped with better denoising, structural information restoration and can achieve very
good visual fidelity.

4.3 Ablation Study

In this section, we analyse the effect of each technical design to support our motivation. Several ablation studies have
been conducted to demonstrate that our method is promising to achieve satisfactory enhanced results. Table 2 shows the
objective results (PSNR/SSIM) of the MWCNN and the R2-MWCNN with different loss function combinations.

Table 2: Ablation study of proposed methods on R2-MWCNN and MWCNN [18]

Metric Lpixel Lglobal Ledge Lchannel PSNR(dB) SSIM

MWCNN [4] ! ! # # 19.8476 0.8390
! ! ! # 20.9474 0.8494
! ! # ! 21.4889 0.8478
! ! ! ! 22.5147 0.8529

R2-MWCNN ! ! # # 20.9446 0.8517
! ! ! # 21.8730 0.8544
! ! # ! 22.3621 0.8512
! ! ! ! 23.2260 0.8648

In each experiment, we turn off one or more of the loss functions to study their role in the enhancement. The same
combination comparison between R2-MWCNN and MWCNN reveals that R2-MWCNN performs better in denoising
and detail fidelity. In each block, the first row with previous loss functions serves as the baseline for comparison. The
second and third rows serve as separate verifications of the proposed methods. The last row results show that the
network with our loss functions achieves the best low-light enhancement performance.

5 Conclusion

In this paper, we design a frequency-based framework for low-light image enhancement. DWT is introduced to make
the network learn to remove noise from the structural information. The proposed MSC module can adaptively select
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low-/high-level semantic information for satisfactory detail reconstruction. We have also presented a channel-wise
loss for color correction in low-light enhancement. Finally, we have conducted extensive experiments to verify the
effectiveness of our method against state-of-the-art methods.
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