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Abstract

Objective: To develop and validate a deep learning model for predicting osteoarthritis (OA) 

progression based on bilateral knee joint views.

Methods: In this retrospective study, knee joints from bilateral posteroanterior knee radiographs 

of participants in the Osteoarthritis Initiative were analyzed. At baseline, participants were divided 

into testing set 1 and development set according to the different enrolled sites. The development 

set was further divided into a training set and a validation set in an 8:2 ratio for model development. 

At 48-month follow-up, eligible patients were formed testing set 2. The Bilateral Knee Neural 

Network (BikNet) was developed using bilateral views, with the knee to be predicted as the main 

view and the contralateral knee as the auxiliary view. DenseNet and ResNext were also trained 

and compared as the unilateral model. Two reader tests were conducted to evaluate the model’s 

value in identifying “early-stage” OA.

Results: Totally 3583 participants were evaluated. The BikNet we proposed outperformed 

ResNext and DenseNet (all AUC < 0.71, P < 0.001) with AUC values of 0.761 and 0.745 in testing 

sets 1 and 2, respectively. With assistance of the BikNet model increased clinicians' sensitivity 

(from 28.1-63.2% to 42.1-68.4%) and specificity (from 57.4-83.4% to 64.1-87.5%) of “early-stage” 

OA diagnosis and improved inter-observer reliability.

Conclusion: The deep learning model, constructed based on bilateral knee views, holds promise 

for enhancing the assessment of OA and demonstrating greater robustness during subsequent 

follow-up evaluations. BikNet represents a potential tool or imaging biomarker for predicting OA 

progression.
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Introduction

Osteoarthritis (OA) is the leading cause of chronic disability in the United States and one 

of the fastest-growing medical conditions worldwide (1,2). With aging populations, the incidence 

of OA is expected to rise even further in the coming years. Despite its considerable impact on 

public health, no disease-modifying drug therapy for OA has received approval from regulatory 

agencies such as the US Food and Drug Administration or the European Medicines Agency (3,4). 

The uncertain progression of OA poses a significant challenge in designing clinical trials, as only 

a tiny proportion of patients (4-8%) are likely to experience radiographic progression within four 

years  (5). Including patients predisposed to progression or in the early stages of the disease in 

clinical trial cohorts can accelerate drug development for OA and advance personalized and 

precision-targeted interventions (6). 

X-ray is a commonly used and cost-effective method for assessing OA due to its 

convenience. However, hand-crafted radiographic features have limited value in facilitating early 

diagnosis and predicting disease progression (7,8). Recently, deep learning (DL) has emerged as 

a promising technique for medical image analysis. DL models heuristically learn important 

features from images to enable accurate clinical predictions, circumventing the need for laborious 

manual feature engineering and surpassing the performance of conventional machine learning 

methods (9–11). Prior studies demonstrated the feasibility of using DL analysis of baseline 

radiographs to predict knee pain (12,13), medial joint space loss (14), and subsequent total knee 

arthroplasty (TKA) in OA patients (15). Although DL has shown impressive performance in 

predicting OA-related outcomes, previous works primarily focused on analyzing each knee 

individually, overlooking the systemic nature of the disease and the potential influence of the 

contralateral joint. Given the high prevalence of bilateral knee OA, clinicians need to account for 

both knees concurrently when assessing the relationship between symptoms,  physical function, 

and structural disease, as should DL models do (16–18). Moreover, since OA is a chronic condition 

that necessitates ongoing follow-up and reassessment (1,2), it is critical to evaluate the models’ 

performance in follow-up scenarios.

        In order to overcome the limitations of previously reported DL models for OA, we 

proposed the Bilateral Knee Neural Network (BikNet), which incorporates cross-attention (19–21). 

The cross-attention mechanism in the BikNet enables the network to evaluate both knees 

simultaneously and learn their interdependence. This capability allows it to capture and leverage 
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information from bilateral views from the raw X-ray, resulting in more precise predictions. Our 

hypothesis was that BikNet could learn more effective representations and achieve superior 

performance compared to previous DL models (unilateral models) that evaluate only one knee at 

a time in predicting the progression of OA at both baseline and subsequent follow-up time points. 

Furthermore, we contend that BikNet can aid in diagnosing “early-stage” OA or predicting OA 

onset.

Methods

Datasets. This retrospective study analyzed 12,650 knees using 6,325 radiographs 

obtained from 3,585 participants of the Osteoarthritis Initiative (OAI), a multicenter prospective 

study (https://nda.nih.gov/oai/). All individuals were recruited consecutively from February 2004 

to May 2006. A total of 1,211 participants were excluded for various reasons, such as knee 

replacement, rheumatoid arthritis, at least one knee with Kellgren-Lawrence grade (KLG) 4, or 

missing follow-up for 48 months (as shown in Figure S1). Baseline radiographs (n=3,585) were 

utilized for both model development and testing. The participants were initially divided into a 

development set (from B, C, or D) and a testing set 1 (from A or E) based on the enrolled site. The 

development set was then randomly split into training and validation sets of 80% (n=2,227) and 

20% (n=557), respectively. To further evaluate the models’ robustness and mimic clinical 

scenarios, testing set 2 (n=2,653) was created by obtaining 4-year follow-up radiographs. 

Participants were recruited at four clinical sites, and the Health Insurance Portability and 

Accountability Act–complaint study was approved by the institutional review board (IRB) at each 

site. All participants gave written informed consent.

In this study, nonprogression was defined as no change in KLG or a change from KLG 0 

to KLG 1, while progression was defined as an increase in KLG of at least one or the receipt of 

TKA during the follow-up period (22).

Deep learning workflow. The deep learning workflow is depicted in Figure 1. In brief, 

images of all participants were cropped and preprocessed to fit the model inputs. The BikNet was 

trained using a multitask paradigm with two auxiliary tasks. Subsequently, the model’s output and 

heatmap could be utilized to aid clinical OA evaluation. All deep learning models were trained on 

a workstation equipped with an Nvidia Tesla A100 and an Intel Xeon Gold 5215 CPU. Further 

details are summarized below. 
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Image preprocessing. Before feeding the images into the model, several preprocessing 

steps were performed sequentially to normalize the dataset, as demonstrated in Figure S2. First, a 

pre-trained Hourglass network  (23) was utilized to extract a 700 × 700 pixel region of interest 

(ROI) from all bilateral posteroanterior fixed-flexion knee radiographs at baseline and the 48-

month follow-up time points. The left knee images were flipped to the right knee configuration 

and resized to 310 × 310 pixels after undergoing quality control by radiologists. Next, the images 

underwent histogram clipping between the 5th and 99th percentiles, followed by global contrast 

normalization, wherein the minimum image value was subtracted from all image pixels, and the 

resulting values were divided by the maximum pixel value. Lastly, histogram normalization was 

carried out to improve the recognition accuracy by enhancing the characteristics of the trabecular 

bone texture (24).

Model architecture. The diagram of our model’s architecture is illustrated in Figure 2. In 

contrast to previous studies that take each knee as an isolated input, we take inspiration from how 

clinicians naturally diagnose patients and present our BikNet, which can leverage information 

gained from bilateral views. In our model, the knee to be evaluated serves as the main view, while 

the contralateral knee serves as an auxiliary view to provide complementary information to 

improve prediction accuracy. To better fuse cross-view features, we designed a cross-attention 

module to serve as an inquiry mechanism. This module generates a query vector for each view to 

indicate which part of the feature from the counterpart is more important to the prediction. 

Our study employed a multitask learning paradigm to predict both OA progression, as well 

as the auxiliary tasks of OA diagnosis and anatomical landmarks identification. The auxiliary tasks 

could serve as a regularization measure to help the model focus on the key structure, particularly 

features from the contralateral view, and improve performance, robustness and training speed of 

the network (25). The OA diagnosis task involved classifying cases as either OA or non-OA based 

on the current KLG, where a KLG ≥ 2 was defined as OA. Meanwhile, the task of anatomical 

landmarks identification was a regression task aimed at predicting seven key landmarks in the 

tibiofibular joint. These landmarks included the midpoint of the intercondylar notch of the femur, 

the intercondylar eminence of the tibia, and the edges of the joint. As the primary focus of our 

study was on the main task of predicting OA progression, we did not include a detailed discussion 

of the results of the auxiliary tasks, which were added solely to improve network optimization 

during training.
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More details and the bilateral hypothesis justification can be found in Appendix E1. The 

code and model are available at https://github.com/chqwer2/Bilateral-Knee-Network

Model Comparison and Visualization. To demonstrate the superiority of the model 

developed on bilateral knee views, we compared it with the best-performing backbones (DenseNet 

and ResNext) from previous studies that predicted OA progression, which served as unilateral 

convolutional neural network (CNN) models (14,26). The result reported by Panfilov et al. (27) 

was adopted as a benchmark since it had been the previous state-of-the-art method and used the 

same definition of OA progression as we did. Additionally, we evaluated commonly used DL 

models in medical imaging, including ResNet34, ResNet50, and EfficientNet, to supplement our 

analysis (12,15,24,28). All models were trained on the training set and evaluated on two separate 

testing sets to assess their predictive performance at the patients’ baseline and follow-up visits. 

Evaluation metrics, including the area under the curve (AUC), sensitivity, and specificity, were 

used to assess the models’ performance.

To provide a human-readable interpretation of the DL model, we utilized a class activation 

map (CAM) technique to identify the regions where the model focused its attention and discern 

how it learned discriminative features for risk scores  (29,30). 

Reader Test. Differentiating individuals with an impending onset of disease, referred to 

as "early-stage" OA, is crucial for identifying patients who require preventive care and has real 

potential to better define OA subgroups (6,31). In this study, we defined knees belonging to the 

early-stage OA group as those without radiographic OA (KLG 0-1) at baseline but showed 

progression of one or more KLGs (KLG ≥ 2) over a four-year period. We conducted two 

experiments to evaluate the performance of our model in assisting with the diagnosis of "early-

stage" OA. In Experiment 1, seven experienced clinicians, including four orthopedists and three 

radiologists, were given only bilateral posteroanterior fixed-flexion knee radiographs and asked to 

predict if a patient would experience the onset of OA within 48 months and which knee would be 

affected. In Experiment 2, clinicians were provided with heat maps and model output, in addition 

to plain radiographs, to improve their predictions. For both experiments, we randomly selected 

200 raw radiographs from 200 participants, of which 50 were “early-stage” OA cases (57 among 

400 knees), from two testing sets. All reading experiments were performed on diagnostic computer 

monitors. Figure S3 displays the interface utilized by clinicians to evaluate the risk of OA onset.
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Statistical Analysis. Statistical analysis was performed using R (version 4.02). All 

analyzed data consisted of statistically independent observations. A P-value less than 0.05 was 

considered statistically significant. To assess the predictive performance of BikNet and unilateral 

CNN models in two hold-out testing datasets, receiver operator characteristic (ROC) analysis was 

used, and the AUCs were calculated. Standard deviations and 95% confidence intervals (CI) were 

obtained through bootstrapping with 2,000 redraws unless otherwise stated. The Youden index 

was used to determine optimal model sensitivity and specificity. The DeLong test  (32) was used 

to compare the AUCs of the BikNet and unilateral models. Inter-observer agreement between the 

seven clinicians was evaluated in the reader test using Fleiss' κ.

Results
Subject Characteristics. The participants had a mean age of 60.8 ± 9.17 years and a mean 

body mass index (BMI) of 28.3 ± 4.79 kg/m² at baseline. Among the 3,583 participants, 2,161 

were women, which accounted for 59.3% of the sample. In the subsequent follow-up period 

(testing set 2), the mean age of the 2,653 participants was 64.2 ± 9.00 years, with 1,573 of them 

(59.3%) being women. The percentages of progression of OA were 13.9%, 11.0%, 14.0%, and 7.2% 

in the training, validation, testing 1, and testing 2 datasets, respectively. Table 1 provides an 

overview of the participant characteristics and summarizes the grades and frequencies of 

radiographic OA features.

Model assessment and comparison for OA progression prediction. Table 2 presents the 

results of using Panfilov et al. (27) as the benchmark for our study. They achieved an AUC of 0.71 

using ResNext as the backbone. Despite slight differences in participant selection and image 

preprocessing, the performance of the ResNext unilateral model reported in our study is 

comparable to theirs (AUC: 0.707 vs. 0.71), supporting our adoption of their outcomes as a 

reference and the fairness of comparing BikNet with unilateral models. The ROC curve analysis 

of BikNet is presented in Figure 3A-B. In testing set 1, BikNet exhibited superior performance 

with an AUC of 0.761 [0.728-0.795], outperforming ResNext (0.707 [0.670-0.743], P < 0.001), 

DenseNet (0.708 [0.669-0.744], P < 0.001), and the benchmark (0.71). BikNet also achieved the 

highest AUC in testing set 2 with a value of 0.746, compared to ResNext (0.667 [0.640-0.693], P 

< 0.001) and DenseNet (0.649 [0.621-0.677], P < 0.001). In testing set 1, the sensitivity and 

specificity of BikNet were 0.665/0.774, compared to 0.746/0.556 and 0.518/0.805 for ResNext 
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and DenseNet, respectively. In testing set 2, the sensitivity and specificity of BikNet, ResNext, 

and DenseNet were 0.675/0.738, 0.788/0.481, and 0.702/0.521, respectively. Unlike unilateral 

models, BikNet achieved a balance between sensitivity and specificity (Table 2). BikNet 

significantly outperformed other commonly used backbones as well, including ResNet34 (AUC: 

0.681/0.651, all P < 0.001), ResNet50 (AUC: 0.699/0.646, all P < 0.001), and EfficientNet (AUC: 

0.655/0.652, all P < 0.001). Detailed results of the comparison with other backbone models can be 

found in Figure S4 and Table S1.

Assistance in the diagnosis of early-stage OA. To assess the effectiveness of our model 

in assisting clinicians with the detection of “early-stage” OA, we conducted two reader tests. In 

the first experiment, most clinicians were unable to reliably differentiate between the two groups, 

except for one orthopedic surgeon (F.J) with over 20 years of experience in joint surgery. It was 

found that the performance among clinicians varied significantly, with sensitivity ranging from 

28.1% to 63.2% and specificity ranging from 57.4% to 83.4% (Table S2). This was expected as 

the current approach did not enable clinicians to diagnose “early-stage” OA. In the second test, 

results improved substantially with the additional informative presentation of the model 

predictions. As shown in Table S2, both sensitivity and specificity consistently improved, ranging 

from 42.1% to 68.4% and 64.1% to 87.5%, respectively. Furthermore, all clinicians achieved much 

better performance, as quantified by the ROC-AUC (Figure 3C-D). It was also noteworthy that AI 

support helps clinicians rate radiographs more consistently. Fleiss’ kappa was 0.203 for 

Experiment 1, while the agreement between clinicians was higher in Experiment 2, with a kappa 

of 0.365 (see Table S3). 

Interpretation and visualization for the BikNet. Gradient-weighted CAM after the last 

convolutional layer of the model was overlaid with the radiograph to show the relevance of specific 

areas for the model classification. The results are presented in Figure 4, which indicates that the 

model mainly focused on regions near the joint space to learn features related to the knee and 

classify samples between the two groups. For progression OA (Figure 4A), the model’s attention 

was primarily on the medial joint space or osteophytes, while for nonprogression OA  (Figure 4B), 

the attention was distributed over the joint space with low specificity. These findings suggest that 

the model learned to assess relevant features rather than just image correlations. Figure 4C 

illustrates examples of prediction errors caused by poor image quality and obscured bony 

structures.
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Discussion
Our study presents a fully automated deep learning-based system for predicting the 

progression of OA by evaluating bilateral joint views concurrently on radiographs. Specifically, 

the system uses the knee under evaluation as the main view and the contralateral joint as the 

auxiliary view to mimic the evaluation approach used by clinicians. The proposed DL model, 

named BikNet, achieved outstanding results with AUCs above 0.745 in both baseline (testing set 

1) and follow-up (testing set 2) stages. Moreover, BikNet considerably enhanced the sensitivity 

and specificity of "early OA diagnosis" by clinicians, highlighting the promising potential of 

computer-based methods for evaluating OA.

Although radiographic features have limited added value in predicting the progression of 

OA, previous studies have confirmed the potential of DL in assessing OA using radiographs. Guan 

et al. (14) utilized a DenseNet model to predict medial joint space loss and reported higher 

performance of DL models based on knee X-rays compared to traditional models using 

demographic and radiographic risk factors. Tiulpin et al. (26) proposed an OA prediction model 

based on ResNext, achieving a 6% higher accuracy in identifying progressive cases during a 60-

month follow-up period than previously used methods in OA associated literature. Panfilov et al. 

(27) extended Tiulpin's approach and reported an AUC of 0.71 for a DL method based on X-ray 

in predicting OA progression, using the same definition of progression as in our 

study.  However,  prior studies on DL for OA have focused on each joint as a single entity, whereas 

knee OA typically affects both joints in the absence of local risk factors. Metcalfe et al. (18) 

reported that almost 80% of patients with unilateral disease at baseline developed bilateral OA 

during a 12-year follow-up, while Cotofana et al. (17) found that the risk of OA in "normal knees'' 

is strongly related to the contralateral joint OA status. Therefore, it is crucial to explore a more 

reasonable DL architecture that can assess bilateral knees simultaneously, which is precisely the 

objective of BikNet.

Our model simultaneously takes both views as input and fuses them using a cross-attention 

module. A query feature vector is generated for each view in this module, which is sent to another 

view for establishing mapping from one view to another. The query vector is then answered by 

another view through the establishment of a cross-view directed relationship. To improve the 

model’s performance, we designed our model to simulate a clinical diagnosis process, where a 
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doctor first identifies anatomical landmarks, assesses joint space narrowing, and measures the knee 

alignment to predict the potential risk of OA progression. Our method utilized multitask learning 

to design auxiliary tasks that explicitly predict the OA diagnosis and landmarks to mimic the 

abovementioned progress. Although direct comparison of our model with most prior studies is 

challenging due to differences in outcome definition and cohort selection, BikNet outperformed 

previously reported backbone models in the same setting and surpassed the benchmark reported 

by Panfilov et al. (27) at the baseline time point. Moreover, as a chronic disease, ongoing follow-

up is needed for OA  (1,2). As we know, we were the first to externally validate the OA-related 

models’ performance in the follow-up scenario. It was not surprising that the performance of 

unilateral CNN models declined significantly and showed weak discrimination during follow-up. 

However, due to the effective fusion of the features from the contralateral view, BikNet maintained 

a fair discrimination ability, demonstrating superior robustness compared to models based on 

unilateral views. 

Recent studies have shown the potential benefits of DL-aided systems for various clinical 

applications. For instance, McKinney et al. (33) developed a DL model for diagnosing breast 

cancer and reported that their model outperformed six radiologists. Similarly, Kim and colleagues 

conducted a reader study to assess the performance of radiologists when examining mammograms 

with or without the assistance of a DL algorithm (34). Their results showed that the diagnostic 

accuracy of radiologists was significantly enhanced when working in conjunction with DL. In one 

recent review, Foster et al. (6) noted that informatics systems and clinical decision tools are starting 

to incorporate OA-related predictive models to facilitate shared decision-making. We conducted 

two reader experiments to evaluate the assistance of BikNet in “early-stage” OA diagnosis. It was 

found that neither radiologists nor orthopedists were able to identify patients who were susceptible 

to developing OA when given only raw X-rays and clinical information (Figure S3A). However, 

when presented with additional informative visuals, such as heatmaps and model prediction, the 

performance of all clinicians improved substantially. Specifically, both sensitivity and specificity 

consistently improved to ranges of 42.1-68.4% and 64.1-87.5%, respectively, and all clinicians 

achieved better performance as quantified by the ROC curve (see Figure 3C-D). Given that 

prognosticating OA remains challenging despite extensive clinical and scientific research efforts, 

identifying patients who are in the early-stage of OA or experiencing OA progression is of 

paramount importance to guide treatment and potentially facilitate new preventive or curative 
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treatment strategies. With the assistance of our DL approach, clinicians may have the potential to 

identify patients with "early-stage" OA based only on clinical information and X-rays.

While our initial results are promising, further technical development and validation are 

necessary before our DL model can be implemented in clinical practice. The radiographic data 

included in the OAI were obtained using standardized methods across sites and regularly reviewed 

for quality by the OAI Quality Assurance Center. However, there is still variation in image quality 

that can affect the training of DL models (15). This variation would make it more challenging to 

train the DL model accurately and generalize its performance to test datasets. Additionally, DL 

model performance declined over time, as mentioned above, when evaluating subsequent follow-

up data due to disease progression and image quality changes, particularly for unilateral models. 

These factors can ultimately affect the reliability and validity of the model in real clinical practice. 

Therefore, future studies should focus on developing more robust and generalizable DL models 

that can handle variations in image quality and disease progression over time (35,36). Additionally, 

the current BikNet has been designed specifically for X-ray imaging considering the cost-

effectiveness and convenience in clinical practice. However, it has been demonstrated that 

magnetic resonance imaging (MRI) based DL model or integrating MRI and X-ray can further 

enhance the performance of OA progression prediction (increasing AUC from 0.71 to 0.76)  

(27,37,38). In spite of this, BikNet achieved comparable performance with multimodal models by 

efficiently learning and integrating features from the contralateral joint. We plan to explore the 

feasibility and effectiveness of a multimodal BikNet in further work. Moreover, it is important to 

note that BikNet should not be considered an autonomous diagnostic approach, but rather an 

imaging biomarker or risk assessment tool. It should be utilized in conjunction with other factors, 

such as clinical risk factors, biochemical markers, multi-omics data, or other modality images, to 

aid in the assessment of OA, as demonstrated in the reader test.

Our study has several limitations. Firstly, the data utilized was obtained solely from the 

OAI, which has a limited representation of the Asian population (15). Therefore, it is necessary to 

validate the efficacy of BikNet further using data from different racial groups. Furthermore, the 

progression was defined as an increase in KLG within 48 months, which is the most widely 

accepted definition (22). However, the difference in definition means that our model cannot be 

directly compared with some previous models (14,26). Nevertheless, we attempted to make a fair 

comparison by incorporating the best-performing backbone networks used previously in 
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constructing the unilateral model. Our reproduced unilateral model achieved performance similar 

to that reported by Panfilov et al. (AUC: 0.707 vs. 0.71), indirectly validating the efficacy of this 

comparative approach. 

Conclusion
In conclusion, the current study demonstrated the practicability and efficacy of utilizing 

bilateral knee views for predicting OA progression. The proposed BikNet outperformed previous 

unilateral models and enabled us to construct an effective DL model by incorporating features 

from the contralateral joint. Our model mimics the way clinicians evaluate patients and enhances 

the reliability. Additional validation during follow-up time points and reader tests further 

emphasized the robustness of BikNet in clinical scenarios. Moreover, this approach may have the 

potential for generalization to the assessment of other systemic diseases that involve bilateral limbs, 

such as rheumatoid arthritis.
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Table 1. Baseline Characteristics of Participants

   Training Set Validation Set    Testing Set 1   Testing Set 2   

Participant Characteristics    N= 2227   N= 557    N=801    N= 2653        

Age (y) 60.9  9.16 61.3  9.33 60.3  9.06 64.2  9.00

Gender

    Male 894 (40.1%) 228 (40.9%) 302 (37.7%) 1080 (40.7%)

    Female 1333 (59.9%) 329 (59.1%) 499 (62.3%) 1573 (59.3%)

BMI (kg/m2) 28.2  4.69 27.9  4.46 29.2  5.19 -

Enrolled site B-D B-D A, E A-E

Time point Baseline Baseline Baseline 48-months 

No. of knee readings 4454 1114 1602 5306

KLG

    0 1928 (43.3%) 469 (42.1%) 593 (37.0%) 2182 (41.1%)

    1 839 (18.8%) 221 (19.8%) 276 (17.2%) 969 (18.3%)

    2 1124 (25.2%) 282 (25.3%) 538 (33.6%) 1456 (27.4%)

    3  563 (12.6%) 142 (12.7%) 195 (12.2%) 699 (13.2%)

TKA

    - No 4408 (99.0%) 1103 (99.0%) 1580 (98.6%) 5213 (98.2%)

  - Yes 46 (1.0%) 11 (1.0%) 22 (1.4%) 93 (1.8%)

OA Progression

    - No 3837 (86.1%) 991 (89.0%) 1378 (86.0%) 4924 (92.8%)

    - Yes 617 (13.9%) 123 (11.0%) 224 (14.0%) 382 (7.2%)

Mean data are  standard deviation; data in parentheses are percentages
KLG: Kellgrene Lawrence grade; TKA: total knee arthroplasty
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Table 2. Comparison of Prediction Performance of Bilateral Knee Neural Network and 

Unilateral Models

Testing set 1 Testing set 2

Model AUC

[95% CI]

Sensitivity

[95% CI]

Specificity

[95% CI]

AUC

[95% CI]

Sensitivity

[95% CI]

Specificity

[95% CI]

Panfilov et al.

benchmark†
0.71 (0.02) - - - - -

ResNext
0.707

[0.670-0.743]

0.746

[0.688-0.799]

0.556

[0.53-0.583]

0.667

[0.640-0.693]

0.788

[0.746-0.830]

0.481

[0.467-0.495]

DenseNet
0.708

[0.669-0.744]

0.518

[0.451-0.580]

0.805

[0.784-0.824]

0.649

[0.621-0.677]

0.702

[0.654-0.746]

0.521

[0.507-0.536]

BikNet
0.761*

[0.728-0.795]

0.665

[0.603-0.728]

0.774

[0.753-0.797]

0.746*

[0.721-0.768]

0.675

[0.631-0.720]

0.738

[0.726-0.750]
† Their model only tested on the baseline
* DeLong test showed all P values < 0.001
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Figure Legends

Figure 1. Schematic overview of the deep learning model for osteoarthritis (OA) progression 

prediction on bilateral knee radiographs. Firstly, a pre-trained Hourglass network was utilized 

to detect and segment the right and left knee from the radiograph. In this step, the radiograph was 

resized to 700 × 700 pixels. Subsequently, the cropped knee image was preprocessed to 310 × 310 

pixels and utilized as the input for Bilateral Knee Neural Network (BikNet). BikNet was trained 

using a multitask deep learning approach for clinical diagnosis process simulation. Under the 

bilateral hypothesis, the auxiliary view will be input into cross-attention together with the main 

view to build up the cross-view information mappings. Finally, reader tests were conducted to 

evaluate the performance of the model in assisting in the diagnosis of early-stage OA.

Figure 2. Bilateral Knee Neural Network architecture.  The left part of the figure shows that 

both the main and auxiliary views will undergo feature extraction through a backbone network and 

Attention mechanism. The Attention mechanism can help the model focus on the key structure of 

the knee rather than the unrelated image background. The feature from the main view is then used 

for auxiliary tasks to simulate clinical diagnosis for prediction reasoning. Afterwards, the cross-

attention module will construct information bridges between the main view and auxiliary view to 

map unilateral features into bilateral features, which is later combined with the main view to 

predict the final OA progression status. 

Figure 3. Performance of models and clinicians in OA progression prediction and early-stage 

OA diagnosis. A-B, comparison of model performance based on the areas under the ROC curves 

for (A) testing set 1 and (B) testing set 2. C, the average performance of all clinicians, represented 

by a dot (without model support) and a star (with model support). The black arrow indicates the 

increased sensitivity and specificity achieved by working with the model. D, a magnified region 

of the dashed rectangular area of the ROC curve (as outlined in C), with individual clinicians 

represented by open shapes (without model support) and filled shapes (with model support). The 

integration of our system can enhance the diagnostic performance of clinicians, as depicted by the 

dashed connection lines.
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Figure 4. Visualization of representative cases of progression and non-progression, 

highlighting the focus of the Bilateral Knee Neural Network. The top column displays the 

original images, while the bottom column displays the Grad-CAMs. A, correctly predicted 

progression cases. B, correctly predicted non-progression cases. C, cases of incorrect prediction. 

Grad-CAM, gradient-weighted class activation map. 
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fig 1. schematic overview 
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fig 2. model architecture 
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fig 3. model performance 
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fig 4. grad-cam 
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Appendix E1
Bilateral Hypothesis Justification. Consider a family  of OA distributions, where 𝒴 𝑌𝑛 ∈

 is indexed by time stamp . Under unilateral setting, let  denotes main view in time , 𝒴 n ∈ RT
≥ 0 𝐴𝑛 𝑛

we want to predict the OA condition  in the future point . To facilitate the expression, 𝑌𝑛 + 1 𝑛 + 1

we will omit the subscript in the variables within the following formulas, e.g., the mutual 

information between variables  and  is using  instead of . 𝑌𝑛 + 1 𝐴𝑛  𝐼(𝐴;𝑌) 𝐼(𝐴𝑛;𝑌𝑛 + 1)

The  indicates mutual information (MI), a larger MI value indicates greater variable relevance. 𝐼( ⋅ )

While in bilateral hypothesis, we are given an additional auxiliary view , where the mutual 𝐵𝑛

information can be denoted as:

𝐼(𝐴,𝐵;𝑌) = 𝐼(𝐴;𝑌) + 𝐼(𝐵;𝑌│𝐴).#(1)

Where  is the information A, B together provide about Y, and  is the 𝐼(𝐴,𝐵;𝑌) 𝐼(𝐵;𝑌│𝐴)

conditional mutual information between B and Y given A. Noted that, given , we have𝐼( ⋅ ) ≥ 0

𝐼(𝐴,𝐵;𝑌) ≥ 𝐼(𝐴;𝑌),#(2)

which indicates the we can have information gain ,  of  𝐻 = 𝐼(𝐴,𝐵;𝑌) ― 𝐼(𝐴;𝑌) = 𝐼(𝐵;𝑌│𝐴) ≥ 0

through providing model with Bilateral inputs. Therefore, this conclude that the model can enjoy 

performance benefit when providing bilateral input whereas afore-mentioned information gain is 

positive.

Model architecture. As shown in Fig. 2, BikNet consists of three modules: feature 

extraction, feature cross-fusion and multi-tasking modules. We employ the same feature 

extraction modules for either main view and auxiliary view, but use different feature fusion and 

forward processes for different views. 

Given a main view input  and auxiliary view input , we use a backbone network 𝑥main 𝑥aux

 and a attention mechanism   as feature extraction modules:ℱ( ⋅ ) 𝒜𝓂( ⋅ )

𝑧main = 𝒜𝓂(ℱ(𝓍main)),#(3)

𝑧aux = 𝒜𝓂(ℱ(𝓍aux)).#(4)

In the context of bilateral hypothesis, the main view carries more relevant information in 

some patient cases, whereas the auxiliary view might be more relevant for others. Since multiple 

views convey diversified information combination possibility, their relationship needs to be 

Page 25 of 32

John Wiley & Sons

Arthritis & Rheumatology



For Peer Review

effectively captured and connected. To be relieved from this complexity, we employ a cross-

attention module to integrate cross-view information, which has a fully-connection layer  to FC

mapping feature into cross-attention space:

  (𝑄𝑚,𝐾𝑚,𝑉𝑚) = FC(𝑧main),  (𝑄a,𝐾a,𝑉a) = FC(𝑧aux),#(5)

where  stands for query, and  is the key-value vectors. The cross-attention can 𝑄 (𝐾,𝑉) 𝐶( ⋅ )

calculated by:
um = C(Qm,𝐾𝑎,𝑉𝑎)  = softmax(𝑄𝑚𝐾𝑎)𝑉𝑎,#(6)

ua = C(𝑄𝑎,𝐾𝑚,𝑉𝑚)  = softmax(𝑄𝑎𝐾𝑚)𝑉𝑚.#(7)

The  is the cross-attentive feature. For example, the Eq. 6. represents for a specific query  𝑢  𝑄

from main view, we use it to search within  from auxiliary view and output relevant (𝐾, 𝑉)

information. 

Finally, the above features are used in OA classification head and landmark regression 

head as shown in Fig. 2.

Training details. We utilized PyTorch, a popular open-source framework, to implement 

all deep learning models. The batch size was set to 32 and the AdamW optimizer was employed. 

The learning rate was warmed up linearly for 5 epochs from 210-4 to 210-3 and then set to 210-3 

for the rest of the training. To address the issue of class imbalance, we oversampled the progression 

cases and applied focal loss (1) during training. The ConvNeXt (2) model was chosen as the 

backbone of our BikNet, and all models were pre-trained in ImageNet (3). The training set was 

augmented by applying random cropping, random rotation, horizontal and vertical flip, and gamma 

noise.  Models were trained for up to 25 epochs, and the best snapshots were selected based on the 

area under the curve (AUC) at validation.   

1. Lin T-Y, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object Detection. In: ; 2017:2980–2988. 
Available at: https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html. 
Accessed April 11, 2023.

2. Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. 2022. Available at: 
http://arxiv.org/abs/2201.03545. Accessed April 11, 2023.

3. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: 2009 
IEEE Conference on Computer Vision and Pattern Recognition.; 2009:248–255.
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Supplement Tables

Table S1. Comparison of Prediction Performance of Bilateral Knee Neural Network and 
other Unilateral models

Testing set 1 Testing set 2
Model AUC

[95% CI]
Sensitivity
[95% CI]

Specificity
[95% CI]

AUC
[95% CI]

Sensitivity
[95% CI]

Specificity
[95% CI]

EfficientNet 0.655 
[0.616-0.696]

0.576 
[0.509-0.643]

0.687 
[0.661-0.710]

0.652 
[0.625-0.677]

0.733 
[0.688-0.777]

0.510 
[0.497-0.523]

ResNet34 0.681 
[0.643-0.716]

0.652 
[0.585-0.710]

0.622 
[0.596-0.647]

0.654 
[0.626-0.682]

0.586 
[0.537-0.636]

0.665 
[0.653-0.678]

ResNet50 0.669 
[0.631-0.709]

0.536 
[0.469-0.598]

0.758 
[0.734-0.780]

0.646 
[0.618-0.673]

0.681 
[0.634-0.725]

0.549 
[0.535-0.563]

BikNet 0.761*

[0.728-0.795]
0.665

[0.603-0.728]
0.774

[0.753-0.797]
0.746*

[0.721-0.768]
0.675

[0.631-0.720]
0.738

[0.726-0.750]
* DeLong test showed all P value < 0.001

Table S2. Performance of Individual Clinicians in Predicting OA Onset with or without 
the Assistance of Model
Clinicians 
(Years of experience) Model assistance Sensitivity (%) Specificity (%)

Orthopedist 1 No 36.8 70.6
(5 years) Yes 50.9 77.3
Orthopedist 2 No 28.1 73.5
(4 years) Yes 42.1 83.7
Orthopedist 3 No 56.1 57.4
(11 years) Yes 68.4 65.3
Orthopedist 4 No 63.2 61.5
(24 years) Yes 73.7 64.1
Radiologist 1 No 31.6 81.0
(6 years) Yes 52.6 81.0
Radiologist 2 No 28.1 83.4
(4 years) Yes 49.1 79.6
Radiologist 3 No 57.9 62.7
(12 years) Yes 61.4 87.5

Table S3. Average Ratings of Clinicians in Predicting OA Onset
Sensitivity Specificity Fleiss' Kappa

Model assistance
Without model 0.386 [0.248-0.511] 0.743 [0.696-0.791] 0.203
With model 0.526 [0.395-0.664] 0.840 [0.801-0.881] 0.365
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Supplement Figure Legends

Figure S1. Flowchart showing participant selection and datasets formation from the 

Osteoarthritis Initiative (OAI).

Figure S2. Overview of the image preprocessing pipeline. The cropped X-ray image is first re-

oriented so that both left and right knees are similarly oriented. The histogram clipping is then 

applied, followed by a histogram normalization for trabecular texture enhancement. 

Figure S3. Images show an application of the customized program used by clinicians to 

diagnose “early-stage” OA. A, prediction without model support. B, prediction with model 

support

Figure S4. Comparison performances among BikNet and other commonly used deep 

learning models based on the areas under the ROC curves. A, testing set 1. B, testing set 2.

Page 28 of 32

John Wiley & Sons

Arthritis & Rheumatology



For Peer Review

 

fig s1. flowchart 
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fig s2. image preprocessing 
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fig s3. reader test interface 
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fig s4. supplement model performance 
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