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ABSTRACT

Accurate ego-centric localization assumes a paramount sig-
nificance in the domain of autonomous driving. However,
traditional methods for camera-LiDAR map localization rely
on perspective projection to create a unified representation,
which often falls short due to challenges such as occlusion
and the sparse nature of point cloud data. Despite the recent
surge in popularity of the Bird’s-Eye-View (BEV) paradigm
within autonomous driving, its potential applications in lo-
calization tasks have remained relatively underexplored. In
response to this concern, this paper presents a pioneering end-
to-end approach called the BEV Localization Network via Li-
DAR Map (BEVLoc). By fusing the image and LiDAR map
in the BEV space via the concept of optical flow-based cor-
relation, the BEVLoc framework can leverage the synergis-
tic power of cross-modalities in localizing the vehicle. Ex-
perimental results conducted on the KITTI dataset highlight
the efficacy and performance of BEVLoc in the realm of au-
tonomous vehicle localization.

Index Terms— Visual localization, LiDAR map, Bird’s
Eye View, Optical flow, Pose estimation

1. INTRODUCTION

6-DoF localization serves as a cornerstone in the field of au-
tonomous driving. One of the primary challenges in achieving
this is the limitations of Global Navigation Satellite Systems
(GNSSs), which are widely used but may not always meet
the high precision requirements of navigation. This is par-
ticularly true in situations where signal drifts and blockages
occur. To address these challenges, ego-centric localization
methods have been proposed as a means of improving both
the precision and robustness of localization by leveraging the
sensors embedded within the ego-centric system.

Ego-perception systems, such as cameras and Light De-
tection And Ranging (LiDAR), are capable of accurately ob-
taining 3D position information and measuring the profiles
of real-world surroundings. LiDAR-based methods [1, 2] are
known for their ability to acquire rich landmark information.

*Corresponding author: Xiaojun Tan.

Although this geometric information can be effectively ap-
plied to navigation for path planning, LiDAR-based meth-
ods are not widely adopted due to their high cost and in-
ability to withstand adverse weather conditions, e.g., rain and
snow. In contrast, camera-based methods [3, 4] are more cost-
effective and therefore more likely to be adopted on a broader
scale. Historically, camera-based approaches have lagged be-
hind LiDAR-based methods in terms of performance. How-
ever, recent advancements in camera-based methods have sig-
nificantly narrowed this performance gap between the two.

Conventional customary procedure of map matching, in-
volving the projection of LiDAR points onto the image plane,
is not devoid of its limitations, as it may result in the omission
of vital characteristics. The inherent dissimilarity in density
between camera and LiDAR features becomes apparent, with
less than 5% of camera features aligning with LiDAR points
when employing a 32-channel LiDAR scanner (as indicated
by [5]).

Recently, Bird’s Eye View (BEV) based methods have ex-
perienced a surge in popularity, encompassing various tasks
such as 3D object detection, semantic segmentation, and tra-
jectory planning, thereby attracting significant attention. No-
table advancements, such as LSS (as referenced in [6]) and
BEVFormer (as cited in [7]), serve as exemplary techniques
that have emerged in this domain. The application of BEV
presents a compelling opportunity to extract insights from a
bird’s-eye view perspective.

By adopting this viewpoint, a more comprehensive un-
derstanding of the interplay between the ego-centric vehicle
and its surrounding environment can be attained. However,
the misalignment nature between sensor data and map infor-
mation, which stem from accumulated errors resulting from
untracked vehicle motion is critical for 6-DoF localzation
task.In the context of BEVLoc, our research endeavors to
address this challenge by integrating optical flow [8, 9] with
cross-modality BEV feature matching correlation, incorpo-
rating both LiDAR and camera data. The principal advance-
ments stemming from our research can be encapsulated as
follows:

1) Our research introduces the novel BEVLoc framework,
meticulously designed to tackle the complex task of



Fig. 1: The network architecture of BEVLoc, consisting of BEV Encoder, Cross-modality Correlation and Pose Decoder. First,
we extract the monocular image feature and LiDAR point cloud map feature and transform them into BEV features. Then,
the cross-modality correlation calculation of camera BEV feature and LiDAR map BEV feature is performed to obtain the
correlation volume. At last, the pose regressor predicts the 6-DoF pose of the ego vehicle using the correlation volume.

pinpointing an ego-vehicle’s position using a monoc-
ular camera.

2) We harnesses the power of optical flow techniques to
bridge the gap between LiDAR point cloud data and
camera images. This ingenious approach conquers the
longstanding challenge of aligning these modalities by
seamlessly unifying them in Bird’s-Eye View (BEV)
space.

3) Rigorous experimental evaluations serve as concrete
proof of our model’s effectiveness, demonstrating its
superior performance when compared to the current
state-of-the-art methods. Our research sets a new
benchmark in the field of ego-vehicle localization,
promising a future of safer and more accurate naviga-
tion.

2. METHODOLOGY

2.1. Problem Formulation

In this paper, we propose an end-to-end visual BEV localiza-
tion network via LiDAR map named BEVLoc. Our goal is to
estimate an optimal pose given an pre-built LiDAR map, an
online monocular image and an initial pose. Let M represent
the pre-built LiDAR map, I represent the monocular image
and Pinit represent the initial 6-DoF pose. And for a cam-
era onboard, its intrinsics K and extrinsics E relative to the
LiDAR are fixed. Our network N can estimate a pose offset
∆ψ through these few inputs, so that the initial pose Pinit can
be aligned with the ground truth Pgt. In other words, we can
define the network output as follows:

∆ψ = N (I,M,Pinit),

Pgt = Pinit ⊕∆ψ,
(1)

where ⊕ is the pose composition operator.

2.2. BEV Encoder

BEV images include camera BEV image and LiDAR BEV
image, which are generated in two pipelines respectively.

2.2.1. Camera BEV Image Generation

Camera BEV image generation includes image feature extrac-
tion and view transform. First, the monocular image I is used
as the input of the image feature extractor ϕI to generate a
feature map FI ∈ RC×H×W :

FI = ϕI(I). (2)

Then we transform the extracted range-view image fea-
ture map FI to BEV space through a view transformer VI ,
which contains depth prediction module VIDP and feature
pooling module VIFP . VIDP predicts the depth distribution
of features, then with the given camera intrinsics K and ex-
trinsics E , a 3D frustum point cloud in the ego coordinate
system is generated. FI is scaled by outer product according
to depth probability to generate 3D feature point cloud.

FVIDP
I = VIDP(FI ,K, E). (3)

At last, VIFP applies a pooling operation to flatten
the frustum feature point cloud along the vertical direc-
tion. The 3D features are merged into the BEV feature
ICB∈ RCBEV ×HBEV ×WBEV :

ICB = VIFP(FVIDP
I ). (4)

2.2.2. LiDAR BEV Image Generation

LiDAR-to-BEV projection obtains BEV images of sparse
point clouds by flattening LiDAR features FL along the
height direction. First, the LiDAR map points {pi|i =
1, 2, ..., n} are fed into a voxel extractor ϕL. Then, a pillar



feature 3D backbone VL is used to generate BEV pseudo-
images ILB. In this way, we get a unified representation of
the camera and LiDAR map in the BEV space:

FL = ϕL(pi),

ILB = VL(FL).
(5)

2.3. Cross-Modality Correlation

Our cross-model correlation module exploits the concept of
optical flow to compute the similarity of two BEV images, as-
sociating the image and map to predict ego-pose. For the two
input BEV images ICB and ILB from formula (4) and (5), we
first use a CNN pyramid ϕBEV with three convolutional lay-
ers to downsample and aggregate information, obtaining fI
and fL representing image and LiDAR features respectively.
Next, the cross-model correlation is defined as a cost volume
that stores the matching costs for associating the correspond-
ing features as follows:

fI = ϕBEV(ICB), fL = ϕBEV(ILB),

cv(fI
i, fL

j) =
1

N
(c(fI

i))⊺c(fL
j),

(6)

where cv(fI i, fLj) is the cost volume and N is the length
of the column vector c(fI i), c is columnize operation, fI i is
one feature pixel in fI . For each feature pixel, the cost vol-
ume only needs to calculate its correlation with feature pixels
within a certain range d around the same position in fL. Be-
cause after down-sampling, a one pixel offset at the top level
corresponds to 2L−1 pixels at the full resolution BEV image.
Thus the range d can be set to be small. The cost volume
shape is d2 × H3th × W3th, where H3th and W3th are the
height and width of the 3th layer features, respectively.

2.4. Pose Decoder

The correlation filter establishes correspondence cost between
two BEV images, ICB and ILB. We apply a series of convolu-
tion layers with stride 1 and concat layers on channel to obtain
cost volume features that fuse multi-level information. Sub-
sequently, several fully connected layers are utilized to pre-
dict the translation T along the xyz directions and the quater-
nion Q for rotation, effectively representing the 6-DoF cam-
era pose. To ensure the predicted translation and rotation fall
within appropriate ranges, we include an additional tanh layer
as an output layer. Finally, the network outputs the deviation
between the current estimated pose and the initial pose:

[T ,Q] = PD(cv(fI , fL)). (7)

3. EXPERIMENTS

In this section, we conduct experiments on the KITTI Odom-
etry dataset [10] and choose CMRNet [4] and HyperMap [11]
as our baseline. CMRNet, proposed in 2019, is the first CNN-
based approach that registers monocular images to 3D LiDAR

map. Then in 2021, HyperMap was proposed, which is the
latest and more accurate LiDAR map localization algorithm.
And because map metric localization methods involve differ-
ent sensors and map, we also compare the overall accuracy of
different methods [12, 13, 14, 15].

3.1. Experimental Details

3.1.1. Dataset Preprocessing

The point cloud map of KITTI Odometry dataset, the ground
truth poses and the initial poses of the validation set are pro-
vided by CMRNet. The training set is the sequences of 03,
05, 06, 07, 08, 09 in KITTI Odometry dataset. In order to
compare with other algorithms on the same benchmark, we
selected the representative 00 sequence (4541 frames) with
a large scene range as the validation set. Due to the insuf-
ficient accuracy of RTK(Real-Time Kinematic) ground truth
provided by the KITTI dataset, it can result in map disconti-
nuity in loop closures. So we used the ground truth poses of
CMRNet optimized by LiDAR SLAM.

3.1.2. Input and output

The camera-LiDAR map localization task uses a camera im-
age and a LiDAR point cloud map as input and an estimated
global pose of the vehicle as output. The localization output
is generated in the ego vehicle system, measuring the 6DoF
pose. We use Smooth L1 loss for translation and quaternion
angular distance loss for rotation as CMRNet.

3.1.3. Training Settings

We implement our proposed framework using PyTorch on a
NVIDIA 3080 GPU. All the models are trained using learning
rate 5e−5 and batch size 4 with Adam optimizer. Because the
image sizes in the KITTI dataset are inconsistent, all images
are padded to 1280× 384.

For the camera encoder, we use ResNet34 [16] pre-
trained on ImageNet [17] as the visual backbone to extract
image features. Then we adopt the visual transformation
paradigm of LSS [6] to establish the correspondence between
the image and horizontal BEV plane. The BEV features
ICB∈ R64×128×256 represents a spatial range of [32m×16m]
around the vehicle and the BEV gird size is 0.125m. For the
LiDAR encoder, we use FC-64-64 with BatchNorm as a
lightweight PointNet [18]. And a modified PointPillars [19]
builds the pillars sparsely. The spatial range of point cloud
BEV feature is consistent with the setting of camera BEV fea-
ture, so that correlation calculation can be performed through
the optical flow net built on the basic structure of PWC-Net
[20] . And the correlation range d is set to 4.

During training, we need to simulate random initial poses
bias online. Specifically, we sample the random translation
deviation within [−2m,−2m] in xyz directions, and rotation
deviation within [−10◦, 10◦] about xyz axes for the baseline
experiments. While for the testing time, the initial poses are



fixed. The LiDAR point cloud map is first transformed to the
vehicle coordinate system and then translated by these ini-
tial deviations. The task of the network is to predict accurate
deviations from a biased map using a image. Therefore, the
imposed initial pose bias can serve as supervision, enabling
the network to be trained end-to-end.

3.2. Results
3.2.1. Accuracy performance

We verified that BEVLoc has better accuracy than the base-
line, both in terms of rotation and translation. Our method,
as shown in Table 1, outperforms the baseline with the same
initial pose errors, achieving low translation and rotation er-
rors. Table 2 shows the comparison of the proposed BEVLoc
against other existing map metric localization algorithms.
Our method achieves substantially lower errors on transla-
tion and comparable results on rotation. It can be seen that
BEVLoc has the best localization accuracy on the KITTI
dataset, indicating that BEV space can provide more infor-
mation constraints than matching methods using perspective
projection. In addition, our method also demonstrates the
feasibility of the monocular visual localization problem as
a subtask of existing BEV-based autonomous driving large
models.

Table 1: Comparison with baseline. Our result is the same as
the baseline to take the median localization error for com-
parison. The initial translation and rotation deviation are
[−2m, 2m], [−10◦, 10◦], respectively.

Method Translation (m) Rotation (◦)
CMRNet [4] 0.51 1.39

HyperMap [11] 0.48 1.42
BEVLoc (Ours) 0.39 1.28

Table 2: Average localization error comparison with existing
map metric localization methods.

Method Map Sensors Translation (m) Rotation (◦)
Brubaker et al. 2015 [12] Open Street Monocular 16.0 2.00 (Yaw)
Brubaker et al. 2015 [12] Open Street Binocular 2.10 1.20 (Yaw)
Elhousni et al. 2022 [13] Open Street LiDAR 1.37 1.15

Miller et al. 2021 [14] Satellite LiDAR 2.00 N/A
Zuo et al. 2020 [15] Point Cloud Binocular 0.47 0.87

BEVLoc (Ours) Point Cloud Monocular 0.44 1.68

Figure 2 illustrates the quantile-quantile plot for the rota-
tion and translation components. For rotation errors, the data
distribution is below the reference line and has a tendency to
curve upward, which means that the quantiles of BEVLoc are
smaller and more densely clustered at smaller values. It in-
dicates that the distribution of BEVLoc is more concentrated
with smaller variance compared to CMRNet. And for trans-
lation errors, the data distribution has a downward curving
trend, meaning that the distribution of BEVLoc has shorter
tails, i.e. fewer extreme values.

BEVLoc greatly reduces the deviation of initial rotation
and translation, validating that the model can handle large ini-
tial errors and predict accurate pose offsets.

(a) Rotation Errors (b) Translation Errors

Fig. 2: Quantile-Quantile Plot of BEVLoc errors distribution
relative to CMRNet.

3.2.2. Effect of BEV grid size

BEV grid size determines the resolution of the BEV feature
image, so we further explore the effect of different BEV grid
sizes on the model results in Table 3. We can observe that a
smaller grid size improves the prediction accuracy, which can
be interpreted as higher resolution provides more information
on location constraints. But on the other hand, higher res-
olution will increase the model parameters and increase the
computational burden.

Table 3: Effect of different BEV grid sizes on BEVLoc.

BEV grid size (m) Translation (m) Rotation (◦)
0.5 0.53 1.50
0.2 0.41 1.37

0.125 0.39 1.28

3.2.3. Evaluation of runtime

In order to verify the real-time performance of the algorithm,
we calculate the average runtime of the model processing one
frame. The rumtime performance of BEVLoc is evaluated
based on the model processing the entire KITTI 00 sequence.
The average runtime of one frame is 33.7ms, achieving about
30 fps. This shows that the model can support the real-time
localization requirements of the real scene.

4. CONCLUSION

In this paper, we present BEVLoc, an end-to-end 6-DoF lo-
calization network via cross-modality correlation under BEV,
integrating localization task with the popular BEV paradigm
in autonomous driving. We first describe the construction of
two modal BEV features, representing real-time images and
pre-built LiDAR map, respectively. Then, inspired by the
idea of optical flow, we calculate the matching cost volume
of the two modalities. Based on the matching cost, the net-
work predicts the global ego pose in the map. Furthermore,
experiments on the KITTI dataset demonstrate the accuracy
of BEVLoc. In the comparison of state-of-art localization al-
gorithms, BEVLoc achieves better performance.
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